
Click, Paste,
Compromise:
Unpacking
ClickFix
Malware

>whoami

• SOC Monkey

• Malware Enthusiast

• Professional Brainrotter

alertoverload.com | bajiri.bsky.social

Outline – Highlights

• What is ClickFix?

o Covering the basics of the technique, where it came from, who's using it

• Attack Vectors and Infection Mechs

o Attack chains, payloads, variants

• Case studies!

o SSH LOLBin abuse

o XWorm

• Technical Analysis of lures and ClickFix payloads

o Turnstiles, dynamic and static templates, ClickFix command breakdowns

• Mitigation and Prevention

o GPO fixes, hotkey fixes, hunting queries, and future variants

Introduction to
ClickFix

What is ClickFix?

• Malware distribution method that relies on social
engineering tactics

• Copies a command to the clipboard when the user
clicks the “verify” button

• Typically tricks users into using the Windows Run
menu to execute commands

• Pages typically masquerade as legitimate services

• 1Password, ReCaptcha, CloudFlare, etc…

• Often used to deliver RATs, Infostealers, and other
malware payloads

• LummaStealer, Latrodectus, NetSupport, and
ScreenConnect

From FakeUpdate to ClickFix

• TA571 and the ClearFake cluster began piloting ClickFix in
early March 2024

• Proofpoint tracked this activity, and it is one of the earliest
observations of ClickFix techniques

• TA571 and the ClearFake cluster were notorious for using
FakeUpdate (SocGholish) techniques

• Groups focusing on browser-based Social Engineering
quickly migrated to ClickFix

• Typically, these groups had previously been observed using
FakeUpdate campaigns

• Campaigns used both compromised/malicious domains and
email lures for distribution

• At this point, ClickFix techniques still focused on fake
updates and error messages

• The captcha cloning techniques had yet to develop fully

• Messages used language around “fixing” errors or updating
services

https://www.proofpoint.com/us/blog/threat-insight/clipboard-compromise-powershell-self-pwn

From FakeUpdate to ClickFix

https://guard.io/labs/captchageddon-unmasking-the-viral-evolution-of-the-clickfix-browser-based-threat

Notable Campaigns

September 2024
John Hammond releases an
educational tool
demonstrating fake captcha
techniques

June 2025
mr.d0x releases the FileFix
technique

Attack Vectors
and Infection
Mechanisms

ClickFix Attack Chains
NetSupport RAT Scenario

• ClickFix typically begins with malvertising, compromised domains, or
phishing attacks
• Targeted attacks via Spear Phishing are more common among

sophisticated threat groups

• In the case of malvertising and drive-by-compromise:
• Malicious code is often injected into the page
• Typically calling a remote resource, though it is not uncommon to see all

code bundled into one page

• With Phishing:
• Attacks are more customized and often include HTML attachments or

links to actor-controlled infrastructure

• Users are tricked into executing a command
• Often via the Windows Run menu, with early examples using the

Terminal instead
• Typically abusing PowerShell commands like Invoke-WebRequest,

Invoke-RestMethod, or .Net methods like Net.WebClient

• Commands typically result in fileless malware execution by retrieving
remote code and binaries, executing them in memory
• Notable exceptions to this are NetSupport RAT infections

Cross-OS Targets and Variants

• Windows variants

• Typically abuse lolbins

• SSH, MSHTA, CertUtil, PowerShell, CMD, etc.

• Often seen using Invoke-WebRequest or Invoke-RestMethod to retrieve
payloads

• macOS variants

• Often utilizes the Terminal via Spotlight search

• Use base64 encoded payloads

• Pipes decoded strings to bash for execution

• Linux variants

• Less common

• More likely to be seen in targeted attacks (APT-36)

• Uses terminal hotkeys similar to Windows

Cross-OS Targets and Variants

Windows Variant

macOS Variant

Linux Variant

Case Study: SSH
Abuse

Case Study: SSH Abuse

• Threat actor utilized SSH Proxy Commands as the ClickFix

payload

• This SSH Proxy Command spawned nested PowerShell

instances

• Nested PowerShell instances led to MSHTA execution

• MSHTA was used to retrieve and execute a remote script

• This instance of ClickFix was used to distribute a StealC

payload

• Payload was loaded via an MSHTA-compatible script hosted

on the domain

• The script file was heavily obfuscated and relied on multiple

functions to build the malware payload

Case Study: SSH Abuse

Case Study: SSH Abuse

Write up by LevelBlue on a similar variant of this payload: https://levelblue.com/blogs/security-essentials/hunting-malware-with-mshta-and-cyberchef

Case Study:
XWorm

Case Study: XWorm

Case Study: XWorm - Delivery

• Initial payload builds a function

named "YES"

o Heavily relies on substitutions and

arrays to build commands

• "YES" function uses Invoke-

RestMethod to call a remote domain

o This cmdlet interfaces with RESTful

web services and returns structured,

deserialized, data

• The resulting data is executed via a

call to Invoke-Expression

Case Study: XWorm - Delivery

• The XWorm loader included an AMSI bypass
o AMSI is a standard for scanning file and memory streams for malicious content

▪ It is built into PowerShell by default
o This bypass abuses substitutions and replacements, which is a repeated method throughout the loader

• The AMSI bypass used was authored by Matt Graebers
o S3cur3Th1sSh1t/Amsi-Bypass-Powershell: This repo contains some Amsi Bypass methods i found on different

Blog Posts.

https://github.com/S3cur3Th1sSh1t/Amsi-Bypass-Powershell?tab=readme-ov-file#using-matt-graebers-reflection-method
https://github.com/S3cur3Th1sSh1t/Amsi-Bypass-Powershell?tab=readme-ov-file#using-matt-graebers-reflection-method
https://github.com/S3cur3Th1sSh1t/Amsi-Bypass-Powershell?tab=readme-ov-file#using-matt-graebers-reflection-method
https://github.com/S3cur3Th1sSh1t/Amsi-Bypass-Powershell?tab=readme-ov-file#using-matt-graebers-reflection-method
https://github.com/S3cur3Th1sSh1t/Amsi-Bypass-Powershell?tab=readme-ov-file#using-matt-graebers-reflection-method
https://github.com/S3cur3Th1sSh1t/Amsi-Bypass-Powershell?tab=readme-ov-file#using-matt-graebers-reflection-method
https://github.com/S3cur3Th1sSh1t/Amsi-Bypass-Powershell?tab=readme-ov-file#using-matt-graebers-reflection-method

Case Study: XWorm - Delivery

• The loader contains 2 base64 arrays containing the XWorm client and DLL
• The arrays are combined with other data streams to build the binary byte arrays

o The data streams added to the base64 arrays undergo replacement processes similar to other structures in
the loader

• The loader uses [System.Convert] calls in a unique way
o Typically, conversions from base64 use [System.Convert]::FromBase64String("string")
o This loader uses .GetMethod() and .Invoke to process the conversion using the same method
o The strange formatting is likely to help evade detection

Case Study: XWorm - Delivery

• With the byte arrays prepared, the loader uses a reflection method to load and execute the binaries
o This is a typical file-less malware execution method

• This incident and code used is very similar in methodology to existing LummaStealer payloads
o Exploring PowerShell Reflective Loading in Lumma Stealer | by Andrew Petrus | Medium
o This XWorm loader was likely adapted from the same source

https://medium.com/@andrew.petrus/exploring-powershell-reflective-loading-in-lumma-stealer-8de0e6c04131
https://medium.com/@andrew.petrus/exploring-powershell-reflective-loading-in-lumma-stealer-8de0e6c04131

Technical Analysis
of ClickFix

Spoofed Code Templates

• ClickFix largely comes in two distinct formats

• Bundled in one page – All code is in a single HTML file

• Remotely stored and retrieved – Code is stored externally to the lure/compromised domain

• Additionally, ClickFix is deployed in multiple ways

• Reusable templates that support on-the-fly modification

• Static templates that are pre-generated and boilerplate

• In the case of modifiable templates, parameters are passed to the script to generate the landing page and styling

• Links to svg images, custom text, and custom actions are supported

• For static pages, resources are typically bundled into the HTML file

Spoofed Code Templates

Spoofed Code Templates

Spoofed Code Templates

Command Breakdown

• Observed LOLBin use across 30 incidents

o CMD and PowerShell are most common

o MSHTA, SSH, and Curl are rarer

▪ Often used in more sophisticated incidents

• Most executions utilize PowerShell

o Typically through calls

o SSH ProxyCommand, CMD process starts, etc.

• MSHTA commands typically pull polyglot or
embedded files

o A fun one was the spread of valid MP3 files that had
embedded HTA code

Command Breakdown

Command Breakdown

Mitigation
Strategies and
Prevention

Remediation Approaches

• Group Policy

• Disable the Run dialog box (Win + R) key and remove the Run option from the Start Menu

• App Control policies to prevent the launch of native Windows binaries from the Run Menu

• Configure Terminal settings to warn users when the text they’re pasting contains multiple lines

• Extended PowerShell logging

• Domain whack-a-mole

• Easier with newly seen domain policies

• TLD blocks

• EDR/AV

• Most decent EDR products will detect or alert on ClickFix related behaviors

▪ They won't always stop it though :(

Hunting Query Tips

• Queries should target commonly abused LOLBins

• SSH, Curl, MSHTA, conhost

• Commands often include variants of ‘Human Verification’ or similar wording

• Look for the comments in the command line ‘#’

• Many attacks use the same copy/pasted templates that have similar comments

• Non-standard web requests

• Invoke-WebRequest, Invoke-RestMethod, curl, WebClient

• Often used to pull scripts or payloads

• Explorer parent processes

• ClickFix often uses the Run menu, which executes through explorer.exe

• Detect FYI has a great write up for hunting ClickFix events via KQL

• https://detect.fyi/hunting-clickfix-initial-access-techniques-8c1b38d5ef9b

https://detect.fyi/hunting-clickfix-initial-access-techniques-8c1b38d5ef9b
https://detect.fyi/hunting-clickfix-initial-access-techniques-8c1b38d5ef9b
https://detect.fyi/hunting-clickfix-initial-access-techniques-8c1b38d5ef9b
https://detect.fyi/hunting-clickfix-initial-access-techniques-8c1b38d5ef9b
https://detect.fyi/hunting-clickfix-initial-access-techniques-8c1b38d5ef9b
https://detect.fyi/hunting-clickfix-initial-access-techniques-8c1b38d5ef9b
https://detect.fyi/hunting-clickfix-initial-access-techniques-8c1b38d5ef9b
https://detect.fyi/hunting-clickfix-initial-access-techniques-8c1b38d5ef9b
https://detect.fyi/hunting-clickfix-initial-access-techniques-8c1b38d5ef9b
https://detect.fyi/hunting-clickfix-initial-access-techniques-8c1b38d5ef9b
https://detect.fyi/hunting-clickfix-initial-access-techniques-8c1b38d5ef9b
https://detect.fyi/hunting-clickfix-initial-access-techniques-8c1b38d5ef9b

Future Variants & Current Evolutions

ClickFix is a constantly evolving technique that has led to several notable variants. Many of these variants move away

from the classic WIN+R/CTRL+V/Enter commands.

Future variants will likely:

• Continue migrating away from the Run menu execution

• Use tricks like using the Windows protocol handler (Huntress – August 29)

• Dive deeper into FileFix techniques (Acronis – September 16)

• Improve on execution elements (CTRL+S variant – September 12)

Future Variants

https://www.huntress.com/blog/fake-anydesk-clickfix-metastealer-malware

Future Variants

https://cybersecuritynews.com/clickfix-attack-free-wifi/

Future Variants

https://cybersecuritynews.com/clickfix-attack-free-wifi/

https://alertoverload.com

	Click, Paste, Compromise: Unpacking ClickFix Malware
	Slide 1: Click, Paste, Compromise: Unpacking ClickFix Malware
	Slide 2: >whoami
	Slide 3: Outline – Highlights

	Introduction to ClickFix Malware Threats
	Slide 4: Introduction to ClickFix
	Slide 5: What is ClickFix?
	Slide 6: From FakeUpdate to ClickFix
	Slide 7: From FakeUpdate to ClickFix
	Slide 8: Notable Campaigns

	Attack Vectors and Infection Mechanisms
	Slide 9: Attack Vectors and Infection Mechanisms
	Slide 10
	Slide 11: ClickFix Attack Chains
	Slide 13: Cross-OS Targets and Variants
	Slide 14: Cross-OS Targets and Variants
	Slide 15: Case Study: SSH Abuse
	Slide 16: Case Study: SSH Abuse
	Slide 17: Case Study: SSH Abuse
	Slide 18: Case Study: SSH Abuse
	Slide 19: Case Study: XWorm
	Slide 20: Case Study: XWorm
	Slide 21
	Slide 22: Case Study: XWorm - Delivery
	Slide 23: Case Study: XWorm - Delivery
	Slide 24: Case Study: XWorm - Delivery
	Slide 25: Case Study: XWorm - Delivery

	Technical Analysis of ClickFix
	Slide 26: Technical Analysis of ClickFix
	Slide 27: Spoofed Code Templates
	Slide 28: Spoofed Code Templates
	Slide 29: Spoofed Code Templates
	Slide 30: Spoofed Code Templates
	Slide 31: Command Breakdown
	Slide 32: Command Breakdown
	Slide 33: Command Breakdown

	Mitigation Strategies and Prevention
	Slide 34: Mitigation Strategies and Prevention
	Slide 35: Remediation Approaches
	Slide 36: Hunting Query Tips
	Slide 37: Future Variants & Current Evolutions
	Slide 38: Future Variants
	Slide 39: Future Variants
	Slide 40: Future Variants
	Slide 41

	Conclusion
	Slide 42

